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ABSTRACT

We derive a simple formula for the Wigner decomposition of any matrix of
the vector representation of the orthochronous proper Lorentz group into a
product of a rotation and a boost. When this formula is applied to the
product of two boosts, in the case of non-parallel velocities, the matrix
of the associate rotation follows in a very simple way. The relativistic
composition of velocities is also easily found.



1. INTRODUCTION

In this paper we derive a gsimple formula for the "Wigner decomposition" of
any matrix A of the vactor representation of the orthochronous proper
Lorentz group into a product of a rotation £2(A) , which we name here
the associate spatial rotation , and a boost ﬂ{h}. named the associale
pure Loreniz transformation

A=Q1]1 (1)

The uniqueness of the decomposition is true also in the reverse order 1,
When this formula is applied-to the product of two boosts, in the case of
non-parallel velocities, the matrix of the associate rotation follows in a
very simple way. The relativistic composition of velocities is also easily
found. The paper is self-contained and suggests an approach to studying
Lorentz matrices. This pedagogical purpose leads us to derive in detail the
formulae. It is unnecessary any representation space for the Lorentz group
other than space-time: hence, all results will be expressed directly as
funtions of the malrix elements h&ﬁ_ It is surprising that more
sophisticated methods are usually involved and explicit formulae are
missing in current literature,

Let us introduce the orthochronous proper Lorentz group as the group of
4x4 malrices characterized by the following requirements 2,

A'nA = 1 (2)
A 21 (3)
det A =1 (4)

T is the Minkowski metric in an inertial system of cartesian coordinates,
with matrix elements

MNop= 'Bu.ﬂ 5 al.'mn El‘m (5]

In our notation Greek indices will always run over the four space-time
values 0, 1, 2, 3 | Latin indices only run over the spatial coordinate labels
1, 2, 3, repeated indices are summed over their respective ranges unless
otherwise indicated. We use units in which the speed of light is unity.

Condition (2) is a consequence of the invariance of ds2 = T‘Lm._lzfr dx™dxP and it



iI5 fully equivalent to the following “orthogonality conditions® in
Minkowski space-time

J""'-in:"'ll"i|.‘- ; "ﬂ"mthnﬂ - auﬂ -2 aﬂﬂaﬂﬁ (6)

Using (2), the inverse matrix A~' can be easily espressed in terms of the

matrix elements of A
Alam ATn, | (7)

The inverse matrix A-1 verify (2)

(A)TnAl = q (7')
By egs. (7) and (7) we see that also AT is a Lorentz transformation
AnAT = 1

ar, axplicitly:

Awilpi - AgoNpo = Bap - 2 8oaop (8)

2, THE DECOMPOSITION

If Agg = 1. the immediate consequence of (6) and (8) is Aj, =0 and
Agi =0fori=1,2 3 The matrix A in this case describes a spatial
rotation, which verifies the relation

AT°R =1 (4)

It is appropriate at this point to prove the following theorem:

Theorem 1.

The matrix L) is a spatial rotation if the matrix elements L2, are
obtained from the Lorentz transformation A in the following manner:



Jlllb"r'l'1ll'.l JIIIb"I:IF'I

Qmn= Amp - (10)
‘h"ﬂn + 1

£dog =1 (11)

$dom= Ldmg =0 (12)

L2 will be called the associate rotation of A.
The proof is given in appendix A.

We introduce now the matrix I1 which elements IT,p are obtained from A
in the following manner

nnu“*""'tnn (13)
nnn=nnﬂ=hun (14)
I—Irnn - E'mn "“""lnm ﬂnn { "H"'-Gﬂ * 1}_1 (15)

One  easily shows the following

Theorem 2.

Any matrix A of the orthochronous proper Lorentz group is the product of
the associated rotation £2 and the matrix 1.

OIT = A (16)

The proof is given in appendix B

Because of the group properties, IT is a Lorentz matrix as A and O
We call I1 the pure Lorentz transformation associated to A.

The rotation angle 0 can be obtained from

trsl — 2[1 +1‘JI:I5 H} = 1 +-J'|"‘|.EE —Jll"'l.s_u -I""l.ﬂs_ ( .I'I"I.DD + 1]-1
Thus @ verifies the simple relation

20050 =Agg- 1-Agg Ags (Agg + 1)1 (17)



3. THE DEPENDENCE OF J"'L“.,., FROM VELOCITY AND ROTATION

If a point moves with velocity v in the system S, then it will be at rest in
the system S' obtained from 5 with the boost 11(v).
From

B0 = dx'Midt = j"\m, dx¥/dt

we find that 0 = A, dxV, or

vi= dxdx% = - A/ Ags - (18)
Let u; be 3
uj = L2im vm = - Ajo/ Ago (19)

We use in the following the natural notation
'u’E = 'u'1E+ "H'EE'I' \"32

u2 2 -

= U{< + U + Uug
From eqgs. (A7), (B7) , or directly from eq. (19), we have

s 1k (20)

Using eqgs. (18) we obtain the usual explicit representation of matrix Il
in terms of velocity

L) ~T¥ -1V ~Y V3
ﬂ{vi] o —¥ V4
Y Vp Omn + Vm Ynlr-1) v© (21)
—“yva
where
g = (1 y2)-1/2 (22)

The matrix elements of £2 may be conveniently expressed as



Qun= Apn -(r-1) up v v2 (23)

Conversely, any matrix of the orthochronous proper Lorentz qroup can be
expressed as a function of the v;and u; components of velocity and of
matrix elements of the rotation £ (as determined in the original frame)
in the following way

T =TV =T¥o =¥Va
J""L{Ui, il] == =¥ Uy
= Q 1) v2
Y Us mn *+ Um ""n{'l’ ) v (24)
=rus )

One may ask why Il{vi} is a pure Lorentz trasformation, i.e. if we have
ruled out from Il any additional rotation. To see that, it is helpful to think
of rotations as motions occurring in space-like two-planes, with only one
fixed point.

We exclude rotations showing that any point of a space-like plane aA + bB
is a fixed point under I1.

Let A = (0, a4, ap, ag) and B = (0, by, ba, bg) be two orthogonal space-like
four vectors

My AHBY =0 (25)
Since - J"‘L,Du = - n oy are the covariant components of the four-velocity v

= “I-de /dt, which is a time-like vector, if vja; = wibj = 0, then A and B
can be choosen orthogonal to dx¥/dt, and one gets

]'IE,HALP=I'[HPBF=G (26)
[Ta=naA (27)
IlB=8B (28)

From eq. (24) one can easily see that any symmetric Lorentz matrix

A(v;£2) is a boost or a boost followed by a m-rotation about v, since £2 =
| g

oy



4. PRODUCT OF TWO PURE LORENTZ TRANSFORMATIONS
It i1s easy to show that the product of two boosts
ITqu) TTikp) = Afv;, £2)

15 @ boost only if the velocities u = (uq,up, ug) and k = (ky, ko, kg ) are
parallel. The relevant matrix elements of this product are

Moo = Yutk (1 +uk) (29)
Aom = -y [¥k km + um + uk(yy - 1)km &2 (30)
"ﬁ"mn sty | ['I"u Um + ke + “"‘(Tu " 1}'-'m “'2] (31)

Amn = Yu Y Um kn + Omn + km kn (1% - 1) k2

+ umup (v - 1)u2 4 upkpuk w2k2(y,-1) (ne-1) (32)
By using the identities
(Yu-1) v2 =92 (y, + 1) (33)
(- 1) k2 =32 (e + 1) (34)

and one can write the above expressions (30) and (31) as the components
of a vector combination:

r"'hum=—"fu‘|rk[k+u+"fk("m+1}'1Itx{kxu}]m (30%)
ﬂmu='TkTu[“+|“+Tu{Tu+'}_1““{U?‘k}]m (37°)

From eq. (29) we obtain

v ="Th Yk {1 *'-""‘}
(35)



and 4

v a1 = (1-u2)(1-%2) (1 + uk)-2 (36)
It A(vj, £2) is a boost, from the property Agi = Ajp one must equate (307
and (317)

T (e + 1) Tk kxu) = vy (yy+ 1) uxuxk (37)

It is obvious from eq. (37) that k and u must be parallel. Note that the
product is commutative for collinear boosts,
In any case from eq. (18) we obtain the composition law of the velocilies

k +u + "r"k{"fh+‘l}'1 k x (k x u)
Ve (38)
(1 +u-k]

v is the welocity of a point in the laboratory and u is the velocity of the
same point in a frame that moves with velocity k relative to the
laboratory.

I’k and u are not parallel, the matrix elements £ ... of the associate
rotation (10) are given by

Q

mn =
Omn + Tutk Um Kn + Kkmkn (- 1) k-2
+ um un (- U2 4 ug kg uk (v - 1) (y- 1) w2 k2
Yo tlre (1 +0k) + 11 [ry um + ki + wk(rg - 1)up v2]
[Yi kn + un + k(¥ - 1)kq 2]} (39)
We may obtain a more compact form of (39) by straightforward

computation, (carried forward in appendix C); the matrix elements of the
associate rolation are given more simply by



(vy - 1} {Tlﬁ 7 1) [km Kn Um Un

Qmn = Omn - ¥
Yu ]rk{‘] -|hl..l-ll=:]I + 1 k2 u2
u- k Tu Tk
2 um kn ] * (umkn - kmup) (40)
u? ke Tu 'ﬂth +u-k]+1

It is obvious from eq. (40) that the vector (0, u x k) is a fixed vector under
the rotation £2, which can also be written as

(v - 1) (nc-1) w2 k2
Qmn = Omn - {[““{h“”}]m kn
"l’u"l"k{1 + uk) + 1

Tu Tk
& i [k:[u:k]]n} + (bon Jn s Kai - (1)
':,-'u'ﬂ,:{1+u-k}+1

The rotation angle is given by

CTERI B Tt S B

trQ =2(14+c050) m4-2 [1- ] (42)
Tu Tk {1 + u-h] +1 u k2

or

(v-1) (n-1)  (uk)?

cosf=1- 1-
Yu T (1 +|.|-I':]I +1 u? k2

] (43)

The angle 0 is independent of the order of the product TI{u)Tl(k;) or
nl[hi’.ln{ui:l.

Let introduce the angle ¢ between u and k as u-k = uk cos ¢, then



(Tu -1) ('ﬂc . 1}
cosf=1-— sen® ¢ (44)
Tu Mk (1 + uk cos @) +1

In case of collinear velocities, i.e. when u = % k.,

hence, we see directly that the product of two collinear transformations
does not entail any rotation.

The product of Lorentz matrices without any resftriction is discussed in
appendix D.

The discussion, within this approach, of the Thomas precession will be
included in a paper in preparation.

APPENDIX A
Theorem 1

If we construct from the matrix elements of a Lorenlz matrix /A the
following 4x4 matrix £2 :

: J""'=rr'|v|:: MAon

Qon= App - ——— (A1)
Nog + 1

o0 =1 (A2)

o0 = Qo =0 (A3)

Then L) is a spatial rotation, i.e.

QOQT. QT .1 (A4)
Froof of theorem 1

It suffices to calculate £2¢ $2gp.

We list the relations (6) used for computing the above matrix
maoltiplication:



Agm Agp = e+ Aom Mon (A5)
Agm Ago = Aom Moo (AB)
Ago Agg = Ago Ao -1 (AT)

thus, using (A5-A7) we have

'ﬁ'ﬁ-ﬂ "h"ﬂll'l'l hSU hﬂl‘l

R B2y = (Mg - ) (Asgn-
Aog +1 Aoo + 1

= AgmAsgn- {hsm Ago Aon + Agn Ago ""‘"*::lrn:I (huu + 1)1
+ Ago Aom Aso Mon { Ago + 1)2

=Omn + Aam Aon - 2 AomMon Aco [huu + 1}_1

+ hﬂmhun (ﬁnﬂ hnn . !}[huu + 1}_2 - ﬁmn

APPENDIX B

Theorem 2.

Any matrix A of the proper orthochronous Lorentz group is the product of
the associated rotation £2 and the matrix Il defined in the following
way':

11— (B1)
nnn " nnu - """*ﬂn (B2)
]_Imn | ﬁmn -+ Jhlum ﬁﬂﬂ (ﬁﬂu + 1]-1 {EB}I

It suffices to prove the following two relations



ﬂms “su . hmn

EJI*rns ] !sn - "ﬂ"mn

We can check (B4) by using eq. (B), or more explicitly

JId'"*mﬁ 'ﬁ'ﬂﬂ- P ‘ﬁ"mn hﬂﬂ

Aos Aos = Ago Ago -1

as follows

ﬂlT‘IE nﬂ-ﬂ i hl"ﬂS ﬁ"ﬂﬁ ¥

= AmoMoo - (Moo Moo - 1) Amo (Aoe + 1)

Ao Aos Nos (hnn + 1)_1

JI"’*rm:n ﬁﬂﬂ i (hﬂu"')hmn o hmu

Expression (B5) is checked by using egs. (10), (15), (B6) and (B7)

JIIh‘ﬂ'“'.'l A‘DE

ﬂmsn sN = (hms

Hu""l

}[ﬁsn + Ngs Agn (hm + 1]‘1]

= Apn + ( Ams Ags Aon- Amo Agn){ Ago + 1)

- Amg MAgs Aogs Aon { Agg + 1]'2

- hmn + {hmn J""‘nu J""'Ln:tn . JI""‘Tm::n Jﬂli‘nn“ hm + 1}'1

’ JII'1'~r"|‘ll::ﬁ "I"‘DI"I':: A‘GDA

o0 ° 1]( Agg + 1)-2

= Amn + (Amo Ago Aon - Amo Agn)( Ago + 1)1

1 JI'l‘ll'l'l'l:l' hﬂn [ Aﬂﬂ
APPENDIX C

We can write eq. (39) as follows

; 1:'{ ﬂun * '}'1 - ﬁmn

(B4)

(BS)

(B6)

(B7)



Qon= Omn - Yo Telvy W (1 +uk) + 1] kg
+ A Ky kg k2 + up up U2 ] + B upy ky (C1)

The coefficient A 15 easily evaluated (the asymmetry between u and k will
disappear at the end)

Aw -1 frgwc (10 +uk) 1] [ K2y we + vy v uk( - 1))
— -1 [rom (0 vui) el {LR2 v - (- 1) (rame+ )
e (1) ra w1+ k) « 11}
= - Irume (0 +uk) + 1] [(K2-1) vy -+ 1+ vu %]
= - (vu-1) (n- 1) [ru we (1 +uk) + 1] (o8
The coefficient B is given by
B = Yuvk + uk(yy-1) (nc-1)u2k2

Yo ¥k [Yu +uk(vg-1) v2 ][ +uk(n-1) k2]

[vu v (1 +uk) + 1]

- Tutk + Uk w2 (1 + 1}'1 {TI':* 1}"1

(vu v [ (1 +uk) +1] [0 (1 +uk) +1]

(C3)
(vu+ 1) (nc+1) [vo v (1 +uk) + 1]

As an intermediate step, it is useful to mulliply the first and second lerm
in eg. (C3) by the denominator of the last term.

(':I"u . 1} {'i"l-: + 1:' [Tu Tk {1 "'“'k) + 1]{Tu Tk

+ uk TuE W (Tu + 1)‘1 (Th + 1}‘1 }



= Yotk (u+1) (e ) v 1202 (v + 1) (mes 1) (1 +uk)
+ [vu m (1 +uk) + 1] uky,2 52

Yu ke (fu+ 1) (v 1) + %2 02{ vy mc (1 + uk) + 3 (14 uk)

Th(1 +u-llc:lI + {1 +|.r-l|;:| “ {Tu Tk [‘I +u-k] + 1] {1 +u-k]

+

- Yu Yk (1 +uk) - 1}

Yot O+ 1) (4 1)
+ Y2 TkE{ [Tu {1 +u-h) + T] [TH i:‘l' +u-lr.] + 1] +Eu-k} (C4)

By using eq. (C4) one has

[vume (v + 1) (wes 1) + 2uky,2 2]
B = (C5)
(ru+ 1) (ne+ 1) [rwwe (1 +uk) 4 1]

and the matrix elements of the associate rotation are

_ (tu- 1) (- 1) Km Kn Umn Un
2y = 8rﬂn : [ *
Yu Tk (1 + I.I-I{} o, G0 ke ul
u- k Tu Tk
-2 ke | 4 (umkn - kmun) (CE)
u? k2 Tu']’h(1+u-k]+1
APPENDIX D

It is straightforward to apply the decomposition (16) to the product of
two Lorentz transformations £2IT(u)=A (u,€2) and O IT(k)- Ak, Dy, but it
IS instructive to give also a direct derivation. Inspection shows that in
the case of the product of a pure Lorentz transformation with a rotation
we have

[Tiu) @ = D I1n) (D1)

VB



where

h=®-Ty, (D2)
Consequently, we have

Afu, L) Ak, D) = Q TTw) P Tk = QD TIih) k)

= L2 DY Tl (D3]
where, Il(v) is the pure Lorentz transformation and ¥ is the rotation

associated to the product 1I(h)IT(k) and v is the relative velocity

resulting from h and k in analogy with (38). The relevant matrix elements
of IT(v) are

Moo = w1 +nk) (D4)
Mom = - ¥h [¥k km + hy + hk(y - 1)k k2] (D5)
nm“ - amn + []Um ..I._.IE:,I-I-Iir r]uu {D’E}

The associate rotation ¥ is given by

('fh : 1] {TH : 1:-' [F‘rn kn hm b

4 e

¥
qmn“ mn -

Th"m[1+h-lt}+1- k2 he
h- k Th Tk
- 2 —— hypkn] + [ ks = ki ) - IDW
h2 k2 Th Tk (1 + hk) + 1

h



We can decompose the trasposed matrix AT , which is toa a Lorentz
matrix. From AT = © [AT} I [:'LT:I, we obtain:
A=l ATyaT (AT) = m@aT) a1l

App =-1 would imply a change in the direction of time. Det A = 1
preserves the right-handed character of the spatial frame.

The guantities -u; are the components of the velocity of S, relative to
S', as measured in S'.

From (36) it follows that v < 1, ifk <1 andu < 1.

)



